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Abstract. It is a common situation to have lots of recorded data that
you want to use for improving a process in your organization or make
use of this data to provide new services or products. Starting with one
primary data set we describe a system that enhances this data set to
a level such that it can be used by a deep learning system. This deep
learning system then creates a model based on this data set, trying to
predict operational windows for marine operations. Using this model
the system extracts cases for use in a CBR-system aimed at providing
operational support. This paper describes the partial implementation
and results of this system.
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1 Introduction
Critical operations are often meticulously planned and subject to many pa-

rameters that decide if and how these operations are performed. Some of these
parameters are called operational time windows, which in marine environments
often are connected to external factors such as weather.

This paper uses machine learning to predict favorable operational time win-
dows or warn of unfavorable operational windows, so that critical operations
can be planned with better accuracy, e.g. when the operation should ideally
take place. One way of doing this is to look at historical data of previously exe-
cuted operations. By combining data on successful and unsuccessful operations
with the relevant context of that operation, we create a data set that can be
used to find indicators for success or failure in advance. Which context that is
relevant is dependent on the nature of operational window; wind and fog are im-
portant contexts for aviation, while waves and current are important for marine
operations but not aviation.

This paper focuses on marine operations, and we analyze event data captured
from boats moving in and out of zones connected to aquaculture installations.
Next, we calculate the duration of these events and connect them to the relevant
context and the associated success or failure classification.

The data used in this analysis is gathered as part of the EXPOSED project1.
This project aims to develop enabling- and applied technologies for exposed
1 http://exposedaquaculture.no/en/

http://exposedaquaculture.no/en/
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aquaculture operations. The work we describe aims to improve planning of op-
erations on aquaculture installations on exposed locations.

The data is a subset of boats moving across geofences attached to aquacul-
ture installations. This system consists of two zones around every aquaculture
installation in Norway: One outer zone 400 meters from the outer points of the
structures holding the fish themselves (not including the control building/fishfeed
silos). The inner zone is 20 meters from the structure. These limits are in ad-
herence to government regulations that no boat should fish within the outer
zone and no boat should move within the inner zone unless the boat is there to
operate on the installation.

An example of geofencing zones are shown in Fig. 1 below.

Fig. 1: The Green line show the outer geofence zone, the red line shows the inner
geofence zone.

An event is created each time a boat crosses any of the geofence zones,
marking the time. Table 1 below shows an example of a typical event.

Event ID Location-ID Vessel Name Time LocationZone EventType
81766 12966 Vessel A 2014-09-02 21:39:32 1 1
81767 12966 Vessel A 2014-09-02 21:40:11 1 2

Table 1: This table shows an example of two events of a vessel entering (Event-
Type=1) and leaving (EventType=2) the outer zone (LocationZone=1) of loca-
tion 12966.

In data gathered in the EXPOSED project, the aquaculture industry reports on
several possible problems with fish feed carriers interacting with aquaculture instal-
lations: Approaching the feed barges, often placed in shallow waters; Knowing which
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barge container to fill with what feed; Planning according to weather and route to
enable the installation crew to attend the operation; And the fact that impact and
currents from the boat can damage the installation.

As our data only gives us the time spent in two different proximities to the aqua-
culture installation there will be limits to which types of operational problems we can
detect, and it will be very hard to discern between different causes (other than bad
weather which is very general) of any detected problem.

The architecture of the full decision support system for EXPOSED is illustrated in
Fig. 2. In this paper we only present results from parts of the system. Future work will
integrate these results with the other modules (e.g. knowledge models) to complete the
system to a state where it can be verified in the field.
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Fig. 2: The architecture of the planned systems. The parts implemented are
highlighted, the case base and the future state is highlighted in red as being the
current target for development.

Our main hypothesis is that given enough contextual weather data a deep neural
network should be able to predict the length of a maritime operation at a aquaculture
installation, enabling us to predict favorable operational windows. The main contribu-
tion of this paper is to show the reader the process of gathering, collating, filtering of
data and subjecting this data to an analysis.

This paper is structured as follows; Section 2 introduces related work and our work
in the light of this previous work. Section 3 describes the methods used in our work
as well as the data sources used. Section 4 shows the result of our experiments, while
section 5 presents the conclusion along with a discussion of the results.

2 Related work
In this work we aim to extract cases from a time series of events, CBR research has

been done on several aspects of automatic case-authoring.
In CBR there has been a lot of focus on how to measure competence and utility of

a case-base [1,2]. In [3], they do this via reversing deletion policies constructed in [4]
that try to improve case base utility without degrading competence.
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Several works [5,6,7] use NLP to extract cases from structured and unstructured
([8,9,10]) text.

More specifically connected to the task of extracting cases from time series is the
work done by Bach et.al. [11] where they employ clustering of time-series events in
time and space, in combination with other detection methods. Funk et. al [12] uses
different models of how predictive (or discriminatory) different time-series patterns are
to different medical diagnosis of stress. For more insight into work done in time-series
analysis connected to CBR research we suggest chapter 3.3 in [13]

The work presented in this paper shares the approach of Bach et al. [11] in that we
try to extract the useful data points from the time series via clustering and filtering.
Our work differs from the previous work in that we have very few verified cases apriori
or during learning. In other words, the time-series is in all practical sense unlabeled for
our use. We will try to apply common knowledge about how long an operation usually
takes to perform. Then we can extract failed operations from the even time series to
create cases that exemplify failed operations.

3 Method
To enable the deep learning system to correctly model and predict the time spent

at an installation, we need to provide it with as much context data as possible for each
of the event data points. In addition, we need the data to be as noise free as possible,
thus we want to filter away operations that naturally have a high degree of variation
in time spent at the location. We address these two requirements by combining the
primary data set with other data sets, to enable us to provide filtering and context. An
illustration of this process can be seen in Fig. 3 . Below we describe each of the data
sets.
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Fig. 3: This figure illustrates how the different data sources are combined and
filtered to provide the deep learning system as much context as possible.

Boat data set As mentioned in the introduction we do not want to analyze all
the traffic data of all of the boats. To verify that our method is usable in at least
one instance, we want to look at a specific type of boat that has stable characteristics
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when it comes to the parameters (e.g. time and stability of time) of the operations it
executes on the installation. We chose fishfeed boats in this case, as they only do one
type of operation. That way we do not need to deduce the type of operation from the
event data (one less hidden variable). In addition, this operation should be stable in
the time it takes to execute it. To filter the data accordingly we need to combine the
event data set with a data source that describes the boats. We can then easily extract
the fishfeed boats.

NORA10 data set NORA10 [14,15] is a data set that describes output of a
precise weather model (hind-cast), that is validated by measurements. It has a higher
resolution (10km) than most other models (e.g. the much used ERA2 model with 80km
resolution) as it is re-sampled for this specific region around Norway. We sample this
model for each of the installations and at each time of each event (in the case of long
events we use the median time of the event). We sample every datatype that we think
will have an impact on the time spent on an operation: wind speed, wave direction,
wind direction, significant swell wave height and significant wave height.

Exposure data set SINTEF EXPOSED has produced a data set [16] that de-
scribes the degree of exposure for a large number of the installations that are used in
the event data set. This data set provides a level of exposure for 360 degrees around the
installation (from 0 to max, where max is no land in sight). We combine our weather
data with this (described above), thus we combine the wind direction of the wind with
how exposed the location is in the direction of the wind using a filter that combines
exposure level from +/- 10 degrees around the direction of the wind.

3.1 Extracting time spent in zones.
The data set needs to contain the time spent in the zones around the aquaculture

installations. The raw data only contains events of entering and exiting the zones. To
extract this we sequentially find each exit from a zone then search backwards for the
entry to that zone by the same boat, then compute the time spent in that zone.

3.2 Grouping events close in time
After converting all discrete events into events with a duration, we still ended up

with a lot of extremely short events. This is most probably caused by boats trying
to stay close to the installation but the dynamic positioning system moves them in
and out of the inner or outer zones. To counter this fact we grouped all events with
the same boat at the same location within 1 hour into one event. However, after this
grouping there is still 63% (or 244) of the events within the first 10 minute window.
These are events within a zone that is less than ten minutes in duration and without
another event in the same location within one hour of the original event. There are
three possible explanations for these strange events: 1. The boat is passing through
the location, and not returning for at least one hour. Or otherwise briefly enters and
exists the zone, without this fact having any effect on the operation. 2. The boat
tries to perform an operation at the location but has to abort and leaves within ten
minutes. 3. The event was not registered correctly when the data was gathered. The
most probable cause for most of these events are boats that travel through the zone
heading for another location. This hypothesis can be tested by removing outer zone
events from the distribution. As the inner zone is small, very few of these big fishfeed
carrier boats would drive through the inner zone of an aquaculture installation when

2 http://www.ecmwf.int/en/research/climate-reanalysis/era-interim

http://www.ecmwf.int/en/research/climate-reanalysis/era-interim
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heading somewhere else. We can still see 244 events that are of duration 10 minutes
or less within the inner zone of an aquaculture installation. Figure 4 looks at the 1
minute distribution within the first 10 minutes to try to find the causes for the high
number of short stay events. And once again we can see that many of the events are
very short, with very few events lasting more than 3 minutes. This further supports
our first hypothesis.
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Fig. 4: Distribution of events over length of stays in all inner zone after grouping
all events within a 1 hour time window. Zoomed into the first 10 minutes.

One problem with our approach so far is that some events are very far apart in
time as well as having different zone types. One example being one boat having a 0
second stay in the inner zone of location 31437 at 18:23 the 28th of November, however
the boat entered the outer zone of the same site at 17:04 the same day, and exited zone
1 of that location at 18:24. We can then conclude that the boat spent approximately
1 hour and 20 minutes at the location in the outer zone, then very briefly entered the
inner zone before leaving the location. Again supporting the first hypothesis. From this
we can see that including inner zone in analyzing fishfeed carrier operations adds very
little information to our analysis as the fishfeed carriers do not enter the inner zone
when transferring fishfeed. As a consequence we discard the inner zone data. We are
still left with 2401 events with a duration shorter than 10 minutes. Fig 5 shows the
distribution of these events length in stay. We can see that most of these are shorter
than 5 minutes, and most probably does not represent actual maritime operations (or
failed tries), but rather traveling through the zone. Thus we discard events shorter than
10 minutes, giving us the final distribution shown in Fig. 6.

3.3 Predicting the operational time using Deep Learning
To extract cases that exemplify instances where the weather conditions stops a

fishfeed operation from being successfull, we are currently building a deep learning
model aimed at predicting the time spent at the installation, with the given weather
and level of exposure at the time and location. The input to the model is: draft and
length of the boat, wind speed3, distance between the model grid point and actual site
coordinate, wave direction3, wind direction3, maximum level of exposure at location,
significant swell wave height3, month, hour, wind effect (wind speed combined with

3 Measured at the closest grid point in NORA10
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Fig. 5: Distribution of events over length of stays in all outer zone after grouping
all events within a 1 hour time window. Zoomed into the first 10 minutes.
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Fig. 6: Distribution of events over length of stays in all outer zone after grouping
all events within a 1 hour time window. With all stays smaller than 10 minutes
removed.

exposure levels in the wind direction +/- 10 degrees) and significant wave height. The
output of the model is the amount of time spent on the installation.

The regression was implemented using python. We used sklearn for preprocess-
ing and scaling (MinMax scaling) of input data (including regression target). The
Keras library for deep learning was used for the regression itself, with a input layer
of inputcolumns + 1 = 14 nodes. We used 3 hidden layers with 13 nodes each and a
output layer of 1 node. All nodes used the ReLU activation function.

4 Results
The current results show that there is little information in the gathered data

(through the NORA10 model and exposure levels) that account for the variance shown
in the time spent at the locations. The neural network models presented in the previous
Section 3.3 gets very low accuracy (0.11%, which means the predictor is very slightly
better than just outputting the average) in terms of predicting how long a fish feed
boat stays at a aquaculture installation. Figure 7 shows the length of all of the events in
the chronologically in blue and the predicted length in orange. The "Time Spent" axis
is normalized values of the time spent in near a installation where y = 1.0 represents
the longest stay recorded in the training data. There are obvious differences between
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predicted and true values; predicted values consistently returns too high values, and
fails to predict short stays. A cross validated (cv = 5) hyper parameter grid search
was performed and showed no better performance at 10 hidden layers with 56 nodes
in each hidden layer.

Fig. 7: This shows the DNN model try to predict the amount of time spent at
a installation in orange, and the actual time spent in blue. The X-axis is simply
the record number, where the record are ordered along the time axis.

After we received the disappointing results we created scatter plots of two weather
variables in relation to the length of stay at the installations. Typically most would
assume there would be a pattern of some correlation between the weather and the
length of stay. However Figure 8 shows that neither wind (8a) or waves (8b) reveals
any obvious correlation patterns against time spent at installations.

In addition we did a principal component analysis of the data, to discover if there
where any clear principal components that could contain the variance in the data. The
components returned: C = (0.127, 0.117, 0.109, 0.099, 0.091, 0.039, 0.034, 0.028, 0.020, 0.011
, 0.008, 0.004, 0.002, 0.000) Where the sum of components sum(C) = 0.6967 indicating
that the total of the components could account for little of the variance. Finally we
tried a standard method for non-linear regression as a base-line result to measure the
DNN against. We tried Epsilon-Support Vector Regression (SVR) which scored with a
coefficient of determination R2 = −0.83 which is worse than constantly predicting the
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Fig. 8: Scatter plot illustrating correlation between the weather and the time
spent at the installation

mean of the target (which would give R2 = 0.0). This final result shows in the context
of the other results listed above us that the data set may not contain the features
needed to predict the length of the stay at a installation.

5 Conclusions and future work
We started the work with a hypothesis that whether or not a fishfeed boat operation

(loading of fishfeed from boat to barge) succeeded depended on the weather, and that
such a failure could be detected from the length of time the fishfeed boat stayed at
the aquaculture installation. Our analysis did not find any deterministic correlation
between the weather and location data and the length of the stay at the installation.
There can be many reasons for this, we will try to list some of the reasons we think
are probable;

The first possibility is that despite our efforts to remove noise from the data, the
data still contains noise. This includes the three factors listed in the introduction section
and other possibilities we have not considered.

Second, given the size of the boats and their stability, they can operate during
harsh conditions. In addition these boats are expensive in operation, and even more
expensive if they fail to deliver feed at the appointed time, possibly starving the fish at
the installation. Thus these boats are already subject to careful operational planning.
It may therefore be that there is none to very few failed fishfeed operations in the data
captured. An additional consequence is that the time spent during operations has very
low variance.

Extending this work would start with confirming these possible explanations for
the lack of correlation found in our data. We would also like to gather further data,
extending the number of events beyond the current 2700. This would enable us to train
and test our models with more rigor and less uncertainty.
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