
Progress in Artificial Intelligence
https://doi.org/10.1007/s13748-019-00201-2

REGULAR PAPER

Learning similarity measures from data

Bjørn Magnus Mathisen1,2 · Agnar Aamodt1,2 · Kerstin Bach1,2 · Helge Langseth1,2

Received: 29 April 2019 / Accepted: 15 October 2019
© The Author(s) 2019

Abstract
Defining similarity measures is a requirement for some machine learning methods. One such method is case-based reasoning
(CBR) where the similarity measure is used to retrieve the stored case or a set of cases most similar to the query case.
Describing a similarity measure analytically is challenging, even for domain experts working with CBR experts. However,
datasets are typically gathered as part of constructing a CBR or machine learning system. These datasets are assumed to
contain the features that correctly identify the solution from the problem features; thus, they may also contain the knowledge
to construct or learn such a similarity measure. The main motivation for this work is to automate the construction of similarity
measures using machine learning. Additionally, we would like to do this while keeping training time as low as possible.
Working toward this, our objective is to investigate how to apply machine learning to effectively learn a similarity measure.
Such a learned similarity measure could be used for CBR systems, but also for clustering data in semi-supervised learning, or
one-shot learning tasks. Recent work has advanced toward this goal which relies on either very long training times or manually
modeling parts of the similaritymeasure.We created a framework to help us analyze the currentmethods for learning similarity
measures. This analysis resulted in two novel similarity measure designs: The first design uses a pre-trained classifier as basis
for a similarity measure, and the second design uses as little modeling as possible while learning the similarity measure from
data and keeping training time low. Both similarity measures were evaluated on 14 different datasets. The evaluation shows
that using a classifier as basis for a similarity measure gives state-of-the-art performance. Finally, the evaluation shows that
our fully data-driven similarity measure design outperforms state-of-the-art methods while keeping training time low.

Keywords Similarity measure · Data science · Neural networks · Data analytics · Case-based reasoning · Similarity function ·
Siamese networks · Similarity metrics · Distance metrics

This work was supported by the Research Council of Norway through
the grant number 237790 and the Norwegian Open AI Lab.

B Bjørn Magnus Mathisen
bjornmm@ntnu.no
http://www.idi.ntnu.no

Agnar Aamodt
agnar@ntnu.no

Kerstin Bach
kerstin.bach@ntnu.no

Helge Langseth
helgel@ntnu.no

1 Department of Computer Science, Norwegian University of
Science and Technology, Trondheim, Norway

2 Department of Computer Science, EXPOSED Aquaculture
Research Centre, Trondheim, Norway

1 Introduction

Many artificial intelligence and machine learning (ML)
methods, such as k-nearest neighbors (k-NN), rely on a sim-
ilarity (or distance) measure [21] between data points. In
case-based reasoning (CBR), a simple k-NN or a more com-
plex similarity function is used to retrieve the stored cases that
aremost similar to the current query case. The similaritymea-
sure used in CBR systems for this purpose is typically built
as a weighted Euclidean similarity measure (or as a weight
matrix for discrete and symbolic variables). Such a similar-
ity measure is designed with assistance of domain experts by
adjusting the weights for each attribute of the cases to rep-
resent how important they are (one example can be seen in
[32] or generally described in chapter 4 of [3])

In many situations, the design of such a function is non-
trivial. Domain experts with an understanding of CBR or
machine learning are not easily available. However, before

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13748-019-00201-2&domain=pdf
http://orcid.org/0000-0002-8063-1835
http://orcid.org/0000-0003-0114-8931
http://orcid.org/0000-0002-4256-7676
http://orcid.org/0000-0001-6324-6284

Progress in Artificial Intelligence

or during most CBR projects, data are gathered that relate
to the problem being solved by the CBR system. These data
are used to construct cases for populating the case base. If
the data are labeled according to the solution/class, it can be
used to learn a similarity measure that is relevant to the task
being solved by the system. Exploring efficient methods of
learning similarity measures and improving on them are the
main motivation of this work.

In the CBR literature, similarity measurement is often
described in terms of problem and solution spaces. Prob-
lem space is where the features of a problem describe the
problem; this is often called feature space in the non-CBR
ML literature. Solution space, also referred to as target space,
is populated by points describing solutions to points in the
problem space. The function that maps a point from the prob-
lem space to its corresponding point in the solution space is
typically the goal of supervised machine learning. This is
illustrated in Fig. 1.

A similarity measure in the problem space represents an
approximation of the similarity between two cases or data
points in the solution space (i.e.,whether these two cases have
similar or dissimilar solutions). Such a similarity measure
would be of great help in situations where lots of labeled
data are available, but domain knowledge is not available,
or when the modeling of such a similarity measure is too
complex.

Learned similarity measures can also be used in other
settings, such as clustering. Another relevant method type
is semi-supervised learning in which the labeled part of a
dataset is used to cluster or label the unlabeled part.

How to automatically learn similarity measures has been
an active area of research in CBR. For instance, Gabel et
al. [10] trained a similarity measure by creating a dataset of

Fig. 1 Illustration of problem and solution spaces [19]. py and pz are
two problem descriptions with features describing a problem each of
which has a corresponding (sy and sz) solution in solution space. δp
illustrates the distance between a new problem px and a stored problem
py . Correspondingly, δs is the distance between the solution sy and the
solution sx which is the (unknown) ideal solution to px . A fundamental
assumption in CBR is that if the similarity between px and py is high,
then the similarity between the unknown solutions sx and py is high
(δp ≈ δs): similar problems have similar solutions

collated pairs of data points and their respective similarities.
This dataset is then used to train a neural network to rep-
resent the similarity measure. In this method, the network
needs to extract the most important features in terms of simi-
larity for both data points and then combine these features to
output a similarity measure. Recent work (e.g., Martin et al.
[22]) has used siamese neural networks (SNN) [5] to learn
a similarity measure in CBR. SNNs have the advantage of
sharing weights between two parts of the network, in this
case the two parts that extract the useful information from
the two data points being compared. All of these methods
for learning similarity measures have in common that they
are trained to compare two data points and return a similarity
measurement. Our work of automatically learning similarity
measures is also related to the work done by Hüllermeier
et al. on preference-based CBR [14,15]. In this work, the
authors learn a preference of similarity between cases/data
points, which represents a more continuous space between
solutions than a typical similarity measure in CBR. This type
of approach to similarity measures is similar to learning sim-
ilarity measures by using machine learning models, in that
both can always return a list of possible solutions sorted by
their similarity.

In this work, we have developed a framework to show the
main differences between various types of similarity mea-
sures. Using this framework, we highlight the differences
between existing approaches in Sect. 3. This analysis also
reveals areas that have not received much attention in the
research community so far. Based on this, we developed two
novel designs for using machine learning to learn similarity
measures from data. Both of the two designs are continuous
in their representation of the estimated solution space.

The novelty of our work is threefold: First, we show that
using a classifier as a basis for a similaritymeasure gives ade-
quate performance. Then,we demonstrate similaritymeasure
designed to use as little modeling as possible, while keep-
ing training time low, outperforms state-of-the-art methods.
Finally, to analyze the state of the art and compare it to our
new similarity measure design we introduce a simple math-
ematical framework. We show how this is a useful tool for
analyzing and categorizing similarity measures.

The remainder of this paper describes our method in more
detail. Section 2 describes the novel framework for similarity
measurement learning, and Sect. 3 then summarizes previous
relevant work in relation to this framework. In Sect. 4, we
describe suggestions of new similarity measures and howwe
design the experimental evaluation. Subsequently, in Sect. 5
we show the results of this evaluation. Finally, in Sect. 6 we
interpret and discuss the evaluation results and give some
conclusions. We present some of the limitations of our work
as well as possible future paths of research.

123

Progress in Artificial Intelligence

2 A framework for similarity measures

We suggest a framework for analyzing different functions for
similarity with S as a similarity measure applied to pairs of
data points (x, y):

S(x, y) = C(G(x),G(y)), (1)

where G(x) = x̂ and G(y) = ŷ represent embedding or
information extraction from data points x and y , i.e., G(·)
highlights the parts of the data points most useful to calculate
the similarity between them. An illustration of this process
can be seen in Fig. 2.

C(G(x),G(y)) = C(x̂, ŷ) models the distance between
the two data points based on the embeddings x̂ and ŷ. The
functionsC andG can be eithermanuallymodeled or learned
fromdata configurations of Eq. 1 in Table 1.We then describe
theirmain properties and how they have been implemented in
state-of-the-art research. Note that we will use S(·) to anno-
tate the similarity measurement and C(·) for the sub-part
of the similarity measurement that calculates the distance
between the two outputs of G(·). S(·) is distinct from C(·)
unless G(x) = I (x) = x .

In the following, we characterize the different types of
similarity measures:

Type 1 A typical similarity measure in CBR systems
would modelC(x̂, ŷ) and G(·) from domain knowledge.
Such a similaritymeasure is typicallymodeled by experts

Fig. 2 Illustrating how G(·) from Eq. 1 adds another space, the embed-
ding space, between the problem and the solution space [19] (see Fig. 1).
C(·) then combines the two embeddings of py and px (ey and ex ,
respectively) and calculates the similarity δe between them. The main
assumption is that distance in embedding space (δe) is close to the dis-
tance in solution space (δs) ; if the embedded points ex and ey are
similar, then the true (unknown) solution sx is similar to solution sy .
The main contribution of G(·) is to create a embedding space such that
the distance in embeddings space (δe) is a better estimate of the distance
in solution space (δs) than the distance in problem space (δp)

Table 1 Different types of similarity measures in our proposed frame-
work

C(x̂, ŷ)

Modeled Learned

G(·)
Modeled Type 1 Type 2

Learned Type 3 Type 4

with the relevant domain knowledge together with CBR
experts, who know how to encode this domain knowl-
edge into the similarity measures.
For example when modeling the similarity measure of
cars for sale, where the goal is to model the similarity of
cars in terms of their final selling price. In this example,
domain experts may model the embedding function G(·)
so that the amount of miles driven has a greater impor-
tance than the color of the car. C(x̂, ŷ) could be modeled
such that difference in miles driven is less important than
difference in the number of repairs done on the car. More
details and examples can be found in [7].
Type 2 This type represents similarity measures that
model G(·) and learn the function C(x̂, ŷ). In this con-
text,G(·) can be viewed as an embedding function. Since
G(·) is not learned from the data, it is not interesting to
analyze it as part of learning the similarity measure, as
processing the data through G(·) could be done in batch
before applying the data to S(x, y). Learning C(x̂, ŷ)
needs to be done with a dataset consisting of triplets of
the data points x̂ and ŷ, and s being the true similarity
between x̂ and ŷ.
A special case of Type 2 is when G(·) is set to be the
identity function I (x) = G(x) = x, while C(x, y) is
learned from data. Examples of this type are presented,
for example, in Gabel et al. [10] where the similarity
measure always looks at the two inputs together, never
separately.
Type 3 In this type of similarity measure, the embed-
ding/feature extraction G(·) is learned and C(x̂, ŷ) is
modeled. Typically, the embedding function learned by
G(·) resembles the function that is the goal during
supervised machine learning. Within the similarity mea-
surement, x̂ = G(x) is used as an embedding vector for
calculating similarity, when in classification x̂ would be
the softmax vector output. Using a pre-trained classifica-
tion model as a starting point for G(x) = x̂ as input to,
e.g., C(x̂, ŷ) = ∥

∥x̂ − ŷ
∥
∥
1 should give good results for

similarity measurements if that model had high precision
for classification within the same dataset.
However, it is not given that the best embedding vector
for calculating similarity is the same as the embedding
vector produced by a G(x) trained to do classification.

123

Progress in Artificial Intelligence

Type 4 This measure is designed so that both G(·) and
C(x̂, ŷ) are learned.

We will design, implement and evaluate similarity mea-
sures based on Type 1, Type 3, Type 2 and Type 4 in Sect. 4.
These results are shown in Sect. 5.

To allow S as a similarity measurement for clustering,
e.g., k-nearest neighbors, a similarity measure should fulfill
the following requirements:

Symmetry S(x, y) = S(y, x) The similarity between x
and y should be the same as the similarity between x and
y.
Nonnegative S(x, y) ≥ 0|∀x, y The similarity between
two data points cannot be negative.
Identity S(x, y) = 1 ⇐⇒ x = y The similarity
between two data points should be 1 iff x is equal to
y.

Some of these requirements are not satisfied by all types
of similarity measures, i.e., symmetry is not a direct design
consequence of Type 2 but of Type 3 ifC(x̂, ŷ) is symmetric.
Even if symmetry is not present in all similarity measures
[30], it is important for reducing training time, as the training
set size goes from N (N − 1) to N (N2 − 1). Symmetry also
enables the similarity measure to be used for clustering.

In the next section, we will relate current state of the art
to the framework in the context of the different types.

3 Related work

To exemplify the framework presented in the previous sec-
tion, we will relate previous work to the framework and
the types of similarity measurements that derive from the
framework. This will also enable us to see possibilities for
improvement and further research.

As stated in Sect. 1, our motivation is to automate the
construction of similarity measures. Additionally, we would
like to do this while keeping training time as low as possible.
Thus, we will not focus on Type 1 similarity measures as
this type uses no learning. Both Type 2 and Type 4 require
a different type of training dataset than a typical supervised
machine learning dataset, as C(x, y) is typically dependent
on the order of the data points (see Sect. 4). Thus, given
our initial motivation, Type 3 similarity measures seem to
be the most promising type of similarity measure to focus
on. However, it is worth investigating similarity measures
of Type 4, to see if the added benefit of learning C(x, y)
outweighs the added training time or if it is possible to make
it symmetric (as defined in the previous section) so that the
training time could become similar to Type 3.

Thus, we will focus on summarizing related work from
Type 3 similarity measures, but also add relevant work from
Type 1, Type 2 and Type 4 for reference.

Type 1 is a type of similarity measure which is manually
constructed. A general overview and examples of this type
of similarity measure can be found in [7]. Nikpour et al. [23]
presented an alternative method which includes enrichment
of the cases/data points via Bayesian networks.

Type 2
In Type 2 similarity measures, only the binary C(x, y) oper-
ator of the similarity measure S(x, y) is learned, while G(·)
is either modeled or left as the identity function (G(x) =
I (x) = x). Stahl et al. have done a lot of work on learning
Type 2 similarity measures from data or user feedback. In all
of their work, they formulateC(x, y) = ∑

wi ∗simi (xi , yi)
where for each feature i , simi is the local similarity measure
and wi is the weight of that feature. In [27], Stahl et al.
described a method for learning the feature weights.

In [28], Stahl et al. introduced learning local similarity
measures through an evolutionary algorithm (EA). First, they
learn attribute weights (wi) by adopting the method pre-
viously described in [27]. Then, they use an EA to learn
the local similarity measures for each feature (simi (x, y)).
In [29], Stahl and Gabel presented work where they learn
weights of a modeled similarity measure and the local sim-
ilarity for each attribute through an ANN. Reategui et al.
[24] learned and represented parts of the similarity functions
(C(x̂, ŷ)) through ANN. Langseth et al. [18] learned similar-
ity knowledge (C(x̂, ŷ)) from data using Bayesian networks,
which still partially relies onmodeling theBayesiannetworks
with domain knowledge.

Abdel-Aziz et al. [1] used the distribution of case attribute
values to inform a polynomial local similarity function,
which is better than guessing when domain knowledge is
missing. So this method extracts statistical properties from
the dataset to parametrize C(x̂, ŷ).

Gabel andGodehardt [10] used a neural network to learn a
similarity measure. Their work is done in the context of case-
based reasoning (CBR) which uses the measure to retrieve
similar cases. They concatenate the two data points into one
input vector. Thus, in the context of our framework G(·) is
modeled as a identify function I (x) = x and C(x, y) is
learned.

Maggini et al. [21] used SIMNNs which they also see
as a special case of the Symmetry Networks [26] (SNs). In
SIMMNs, C(x̂, ŷ) and G(·) are both a function of both x
and y data points and there is thus no distinct G(·). They
also have a specialized structure imposed on their network
to make sure the learned function is symmetric. SIMNN is
in essence an extended version of a siamese neural network,
but without a distinct distance layer usually present in SNN
architectures. They focus on the specific properties of the

123

Progress in Artificial Intelligence

network architecture and the application of such networks
in semi-supervised settings such as k-means clustering. The
pair of data points (x and y) are being compared two times,
the first time at the first hidden layer and then at the output
layer. Since there are no learnable parameters before this
comparison, all the learning is done in C(x̂, ŷ) and G(x) is
the activation function of the input layer.

Type 3 One way of looking at a similarity measure is as
an inverse distance measure, as similarity is the semantic
opposite of distance. There has been much work on learning
distance measures. Most of this work can be categorized as
a Type 3 similarity measure as the learning tasks only aim
to learn the embedding function G(·) and then combine the
output of this function with a static C(·) (e.g., a L2 norm
function). The most well-known instance of a Type 3 learned
distance measure is siamese neural networks (SNNs); it is
highly related to the Type 2 similarity measure by Maggini
et al.’s Similarity neural networks (SIMNN) [21].

The main characteristic of SNNs is sharing the weights
between the two identical neural networks. The data points
we want to measure the similarity for are then input to these
networks. This frees the learning algorithm of learning two
sets of weights for the same task. This was first used in [5]
(using C(x̂, ŷ) = cos(x̂, ŷ) and G(·) being learned from
data) tomeasure similarity between signatures. Similar archi-
tectures are also discussed in [26].

Chopra et al. [6] used a SNN for face verification and pose
the problem as an energy-based model. The output of the
SNN is combined through a L1 norm (absolute value norm
C(x̂, ŷ) = ∥

∥x̂ − ŷ
∥
∥) to calculate the similarity. They empha-

size that using a L2 norm (Euclidean distance) as part of the
loss function would make the gradient too small for effective
gradient descent (i.e., create plateaus in the loss function).
This work is closely related to Hadsell et al. [11], where they
explain the contrastive loss function used for training the
SNN (also used in [6,22]) by analogy of a spring system.

Related to this, Vinyals et al. [31] used a similar type of
setup for matching an input data point to a support set. It is
framed as a discriminative task, where they use two neural
networks to parametrize an attention mechanism. They use
these two networks to embed the two data points into a fea-
ture space where the similarity between them is measured.
However, in contrast to SNNs and SIMNNs, their two net-
works for embedding the data points are not identical, as one
network is tailored to embed a data point from the support set,
but also given the rest of the support set. Thus, the embed-
ding of the support set data point is also a function of the rest
of the support set. With C(x̂, ŷ) being modeled as a cosine
softmax, this is similar to the examples of Type 3 similar-
ity measures mentioned previously (e.g., [4,5]). However, a
major difference is that signal extraction functions are not
equal: S(x, y) = C(f (x), g(x)) with f (x) �= g(x) (only

stating that f (·) may potentially equal g(·)). Since f (·) and
g(·) are not sharingweights between them, the architecture is
variant (or asymmetric) to the ordering of input pairs. Thus,
the architecture needs up to twice as much training to achieve
the same performance as a SNN.

In much of the same fashion as Chopra et al. did in [6],
Berlemont et al. [4] used SNNs combined with an energy-
based model to build a similarity measure between different
gestures made with smart phones. However, they adapt the
error estimation from using only separate positive and nega-
tive pairs to a training subset including a reference sample, a
positive sample and a negative sample for every other class.
They train G(·) while keeping a static C(x̂, ŷ) = cos(x̂, ŷ).
This training method of using triplets for training SNNs was
also described by Lefebvre et al. [20]. A similar approach
can be seen in Hoffer et al. [13]; however, they do not use a
set of negative examples per reference point for each class as
Berlemont et al did. Instead, they use triples of (x, x+, x−),
x being the reference point, x+ being the same class and x−
being a different class.

Koch et al. [16] used a convolutional siamese network
(CSN), withG(·) implemented as a CNN andC(x̂, ŷ) imple-
mented as L1(x̂, ŷ). This is done in a semi-supervised
fashion for one-shot learningwithin image recognition. They
learn this CSN for determining if two pictures from the
Omniglot [17] dataset are within the same class. The model
can then be used to classify a data point representing an
unseen class by comparing it to a repository of class rep-
resentatives (support set).

CSNs are also used in the context of CBR by Martin et
al. [22] to represent a similarity measure in a CBR system.
The CSN is trained with pairs of cases, and the output is their
similarity. During training, they have to label pairs of cases
as ‘genuine’ (both cases belong to the same class) or ‘impos-
tor’ (the cases belong to different classes). This requires that
the user has a clear boundary for the classes. In relation to
our framework, this similarity measure learns G(·), while
C(x̂, ŷ) is static, with G(·) implemented as a convolutional
neural network, and C(x̂, ŷ) implemented as Euclidean dis-
tance (L2 norm).

In general, using SNNs for constructing similarity mea-
sures has a major advantage as you can easily adopt pre-
trained models for G(·) to embedding/preprocess the data
points. For example, to train a model for comparing two
images one could use ResNet [12] for G(·) and then use the
L1 norm as C(x̂, ŷ). This would be a very similar approach
to the similarity measure used by Koch et al. [16] with
S(x, y) = ‖(G(x),G(y))‖1, the main difference being that
G(·) is designed for bigger pictures.

There are only very few examples of Type 4 similarity
measures in the literature. In Zagoruyko and Komodakis’s
work [33], they investigate different types of architectures
for learning image comparison using convolutional neural

123

Progress in Artificial Intelligence

networks. In all of the architectures, they evaluate C(x̂, ŷ)
is learned, but in some of these architectures G(·) is not
symmetric, i.e., S(x, y) = C(G(x), H(y)) where G(x) �=
H(x). Arandjelović and Zisserman’s work [2] used a very
similar method to many Type 3 similarity measures for cal-
culating similarity. However, their input data are always pairs
of two different data types and are as such different frommost
of the other relevant work leavingG(·) unsymmetrical just as
in Zgoruyko et al. [33] and Vinyals et al. [31]. In contrast to
the Type 3 similarity measures including [31], Arandjelović
et al. also learned C(x̂, ŷ), which they call a fusion layer.

All similaritymeasures of Type 3we found in the literature
use a loss function that includes feedback from the binary
operator part of S (C(x̂, ŷ)). In the case of SNNs, even if
C(x, y) is non-symmetric (C(x, y) �= C(y, x)), the loss for
each network would be equal as they are equal and share
weights. That means that ordering of the two data points
being compared during training has no effect, i.e., the training
effect of (x, y) is equal to that of (y, x). This means a lot of
saved time during training, as the training dataset could be
halved without any negative effect on performance.

However, the implementation of C(x̂, ŷ) would then
decide how much training one would need to adapt a
pre-trainedmodel from classifying single data points to mea-
suring similarity between them. One could view the process
of starting with a pre-trained model for the dataset and then
training the model with loss coming from C(x̂, ŷ) as adapt-
ing the model from classification to similarity measurement.

One way of creating a Type 3 similarity measure using
a minimal amount of training would be to pre-train a net-
work on classifying individual data points and then apply
that network as G(·) that feeds into a C(x̂, ŷ) = ∥

∥x̂ − ŷ
∥
∥

in a similarity measurement. Evaluation of such a similarity
measurement has not been reported in the literature, and such
a similarity will be explored in the next section.

4 Method

The framework presented in Sect. 2 and the subsequent anal-
ysis of previous relevant work presented in Sect. 3 shows
that there are unexplored opportunities within research on
similarity measurements.

Given the initial motivation, we seek methods that work
well in domains where domain knowledge is very resource
demanding. This requires that asmuch as possible of the sim-
ilarity measure S(x, y) = C(G(x̂),G(ŷ)) is learned from
data rather than modeled from domain knowledge. There
are some exceptions to this, such as applying general binary
operations, such as norms (e.g., L1 or L2 norm), on the two
data points (x̂ and ŷ) preprocessed by G(·). In these cases,
there is little domain expertise involved in designingC(x̂, ŷ)

other than intuition that the similarity of two data points is
closely related to the norm between x̂ and ŷ.

The most promising type of similarity measures from this
perspective isType3 andType4whereG(·) is learned inType
3 and both C(x, y) and G(·) are learned in Type 4. However,
to test any new design we need to have reference methods to
compare against. For reference, we chose to implement one
Type 1 similarity measure, two similarity measures of Type 2
(including Gabel et. al’s) similarity measures and Chopra et.
al’s Type 3 similaritymeasure. TheType 1 similaritymeasure
uses a similaritymeasure thatweights each feature uniformly.
The Type 2 is identical to the Type 1 similarity measure,
except that it uses a local similarity function for each feature
which is parametrized by statistical properties of the values
of that feature in the dataset.

One unexplored direction of creating similarity measures
is creating a SNN similarity measure (Type 3) through train-
ing G(·) as a classifier on the dataset later being used for
measuring similarity and then using that trained G(·) to con-
struct a SNN similarity measure. This is in contrast to the
usual way of training SNNs (as seen in, e.g., [5,6]) where
the loss function is a function of pairs of data points, not
single data points. The motivation for exploring this type
of design is that it shows the similarity measuring perfor-
mance of using networks pre-trained on classifying data
points directly as part of a SNN similarity measure. This
is detailed in Sect. 4.2.

Finally, we will explore Type 4 similarity measures which
have seen little attention in research so far. To make our
design as symmetric as possible, we will use the same design
as SNNs for G(·) and introduce novel design to also make
C(x̂, ŷ) symmetric. That way our design is fully symmetric
(invariant to ordering of the input pair), and thus, train-
ing becomes much more efficient. All of the details of this
design are shown in Sect. 4.3. Both of our proposed similar-
ity methods implement G(·) as neural networks. The Type 4
measurement design implements C(x̂, ŷ) as a combination
of a static binary function and neural network.

4.1 Reference similarity measures

As a reference for our own similarity measure, we imple-
mented several reference similarity measures of Type 1,
Type 2 and Type 3. First, we implemented a standard uni-
formly weighted global similarity (t1,1) measure which can
be defined as:

t1,1(x, y) = S(x, y) = C(x, y) =
M

∑

i

wi · simi (xi , yi), (2)

where simi (xi , yi) denotes the local similarity of the i th of
M attributes. In t1,1, all weights and local similaritymeasures
are uniformly distributed and not parametrized by the data.

123

Progress in Artificial Intelligence

Fig. 3 Architecture of a ANN similarity measure as used in Gabel [10]
(Type 2), whereG(·) is set to be the identity functionG(x) = I (x) = x

We extended this with a Type 2 similarity measure t2,1,
which is based on the work fromAbdel-Aziz et al. [1], where
the local similarity measures are parametrized by the data
from the corresponding features.

Furthermore,we implemented aType 2 similaritymeasure
gabel as described by Gabel et al. [10]. The architecture of
gabel is shown in Fig. 3.

Lastly, we implemented the Type 3 similarity measure
chopra described by Chopra et al. We did not implement
the extension done to the contrastive loss function as seen in
[4,20] as the change in the training dataset would be too big.
This change would make comparisons between the meth-
ods harder to justify. Also none of these works showed any
comparisons with previous SNNs in terms of any increased
performance in relation to regular contrastive loss.

4.2 Type 3 similarity measure

In this subsection, we will detail how we model the Type 3
similarity measure t3,1 which uses an embedding function
G(·) trained as a classifier. This embedding function maps
the input point, x, to an embedding space (see Fig. 2) in
which dimensions represent the probabilities of x belonging
to a class. We then model the similarity measure between
two points as the a static function (C(·) between their two
respective embeddings.

For this, we choose the L2 norm. So replacing C(·) for
L2 in Eq. 1: C(x̂, ŷ) = ∥

∥x̂ − ŷ
∥
∥
2, we can redefine Eq. 1 to

be:

S(x, y) = t3,1(x, y) = 1.0 − ‖G(x) − G(y)‖2 (3)

where G(·) outputs the modeled solution as a n dimensional
vector (the feature vector output from the network to the
softmax function for n classes) for the case based on the
problem attributes of data point x . This means that if the
G(x) evaluates the two cases as very similar in terms of
classification G(x) ≈ G(y) and ‖G(x) − G(y)‖ ≈ 0, then
S(x, y) ≈ 1.0. This architecture is also illustrated in Fig. 4

Fig. 4 Architecture of the t3,1 similarity measure where G(·) is trained
to output softmax vectors for classification and the similarity is calcu-
lated as a modeled L2 norm between these two vectors (Type 3)

Following the model for the t3,1 similarity measure, we
define the loss estimate as log-loss between G(x) = x̂ and
t , where t is the is true classification softmax vector; x̂ is
the class probability vector output from G(x). Notice that
the error estimate of t3,1 does not depend on the output of
C(x̂, ŷ).

A dataset of size N would then be defined as:

T =
[

(x1, t1) . . . (xN , tN)

]

, (4)

where xN is the problem part of the N -th data point and tN

is the solution/target part of the N -th data point.
If the relation between the problem part of the data point

(x) and the solution part of the data point (t) is complex, the
network architecture needs to be able to represent the com-
plexity and any generalizations of patterns in that complexity.

4.3 Type 4 similarity measure

As previously explained, Type 4 similarity measures are cur-
rently the most unexplored type of similarity measure. It is
also the type of similarity measure that requires the least
amount of modeling. In principle, Type 4 similarity mea-
sures learn two things:G(·) learns a useful embedding,where
the most useful parts of x and y are encoded into x̂ and ŷ.
C(x̂, ŷ) learns how to combine those embeddings to calcu-
late the similarity of the original x and y.

In Type 4 similarity measures, both C(x̂, ŷ) and G(·) are
learned. In our Type 4 similaritymethod, wewill use anANN
to represent both G(·) and C(x̂, ŷ). This has the advantage
that the learning on S(x, y) is an end-to-end process. The
loss computed after C(x̂, ŷ) can be used to compute gradi-
ents for both C(x̂, ŷ) and G(·). C(x̂, ŷ) will learn the binary
combination best suited to calculate the similarity of the two
embeddings, while G(·) will learn to embed the two data
points optimally for calculating their similarity in C(x̂, ŷ).
In principle, any MLmethod could be used to learn G(·) and
C(x̂, ŷ), but not all ML methods lend themselves naturally

123

Progress in Artificial Intelligence

Fig. 5 Architecture of a eSNN where we combine the symmetry of
SNNs with the ability to learn C(x̂, ŷ). C(x̂, ŷ) is expanded in this
picture to highlight the ABS(x̂− ŷ) operation done as the first operation
ofC(x̂, ŷ) to keepC invariant to the ordering of inputs. It also illustrates
the two additional loss signals to G(·) which helps train the similarity
measure

to back-propagating the error signal from C(x̂, ŷ) through
G(·) and back to the input.

We define our Type 4 similaritymethod, extended siamese
neural network (eSNN) as shown in Fig. 5.

Given that this similarity method outputs similarity and
the loss function is a function of the input, we get a new
general loss function for similarity, defined per data point as
follows:

Ls(x, y, s) = |s − C(G(x),G(y))|, (5)

where s is the true similarity of cases x and y. Since this loss
function is dependent on pairs of data points and the true
similarity between them, we need to create a new dataset
based on the original dataset. This new dataset consists of
triplets of two different data points from the original dataset
and the true similarity of these two data points:

T =
[

(x1, y1, s1) . . . (xN , yN , sN)

]

, (6)

where sN is 1 if xN and yN belong to the same class and 0
otherwise.

It is worth mentioning that this dataset is of size N (N −1)
for the similarity measure to train on all possible combi-
nations of the N data points. Certain similarity measure
architectures (e.g., gabel fromGabel et al. [10] or Zagoruyko
et al.’s similarity measures [33]) need to train on a dataset
containing all possible combinations of data points (of size
N (N−1)) as training on the triplet (x, y, s) does not guaran-
tee that the model learns that S(y, x) = s. Thus, the training
dataset must also include the triplet (y, x, s). However, this
may be largely avoided by using architectures (such as those
seen in SNNs and SNs) that exploit symmetry and weight
sharing. To achieve this, we modeled C(x, y) as a ANN
where the first layer is an absolute difference operator on

two vectors: z = ABS(x̂ − ŷ). where z is the element-wise
absolute difference between x̂ and x̂. The rest of C(x̂, x̂) is
hidden layers of ANN that operate on z. This way C(x̂, x̂)

becomes invariant to the ordering of inputs to S(x, y). Con-
sequently, the model only needs to train on order-invariant
unique pairs of data points, reducing training set size from
N (N −1) to N (N2 −1). The resulting architecture of eSNN
is shown in Fig. 5.

In Sect. 4.2, we argue why G(·) trained to correctly clas-
sify its input is a good embedding function for calculating
similarity. As a result, we added two loss signals to G(·)
during training. These loss signals are calculated from the
difference between the embedding of the data point produced
by G(·) and the correct softmax classification vector.

This also introduced an opportunity for exploring the rel-
ative importance of the embedding function G(·) and the
binary similarity function C(·) in terms of the performance
of the similarity measure. This could be done by weighting
the three different loss signals (x̂, ŷ and similarity as shown
in Fig. 5) during training and measuring the effect of that
weighting on the performance. We define our weighted loss
function as such:

L(α, x, y, s) = (1 − α)

2
· (Lc(x, tx) + Lc(y, t y))

+ α · Ls(x, y, s), (7)

where Ls(·) is defined in Eq. 5, tx is the true label of data
point x, t y is the true label of data point y and Lc(v1, v2)

is the categorical cross-entropy loss between two softmax
vectors. We use this formula and tested with different 100
different values of α in the range [0, 1] to find the weighting
scheme best for performance. The results are shown in Fig. 6.

Fig. 6 Showing results from weighting the three different outputs in
terms of signal strength to loss measured on the UCI dataset balance
scale [8] (5-fold cross-validation and repeated 5 times). This measure-
ment was done using training data of size N (N

2 − 1). The effect of α is
much less impactful on the validation result after 200 or more epochs
of training when training on N (N −1) datasets. However, choosing the
correct α using N (N

2 − 1) datasets does impact the speed of training
for eSNN when training on N (N − 1) datasets

123

Progress in Artificial Intelligence

Fig. 7 Testing how the RProp algorithm performs in comparison with
ADAM and RMSProp. Our proposed architecture performs best using
the RProp algorithm (fivefold cross-validation and repeated 5 times)

Figure 6 indicates that α = 0.15 is ideal for this dataset.
We have used α = 0.15 throughout the experiments reported
in Sect. 5.

4.4 Network parameters

For all similarity measures tested using ANN and all datasets
except MNIST, G(·) and C(·) were implemented with two
hidden layers of 13 nodes. This was done to replicate the
network parameters used by Gabel et al. to ensure we had
comparable results. For theMNIST dataset test, both chopra
and eSNN used three hidden layers of 128 nodes for G(·)
and the same for C(·)

Other than the network architecture, we also wanted to
choose which optimizer to use for learning the ANN model.
We wanted to chose the RProp [25] to be more comparable
with the results from Gabel et al. which also used RProp
optimizer. Our tests seen in Fig. 7 show that RProp outper-
forms all other optimizers tested (ADAM and RMSProp).
This is consistent with the results reported by Florescu and
Igel [9]. This should hold true until the run-time performance
of RProp degrades with dataset size, as RProp uses full batch
sizes.

4.5 Evaluation protocol and implementation

Thedifferent similaritymeasures presented earlier in this sec-
tion require different training datasets. The reference Type 1
similarity measures (t1,1) require no training, while t2,1 and
t3,1 do not require a similarity training consisting of triplets as
described in Eq. 6. All other similarity measures evaluated
were trained using identical training datasets. As a result,
all similarity measures were trained on a dataset consisting
of all possible combinations of data points (as explained in
Sect. 4.3) as this is required by the gabel similarity mea-
sure. However, results highlighting the differences in training

performance when using the different training datasets are
shown in Fig. 13.

The results reported in the next section are all fivefold
stratified cross-validation repeated 5 times for robustness.
The performance reported is an evaluation of each similar-
ity measurement using the part of the dataset (validation
partition) that was not used for training. Using the simi-
larity measure being evaluated, we computed the similarity
between every data point in the validation partition (V)
and every data point in the training partition (T). For each
validation data point (xv ∈ V), we find the data point
in the training set T with the highest similarity (xt =
argmaxxi∈T (S(xv, xi))). If xt has the same class as xv from
the validation partition, we scored it as 1.0; if not, we scored
it as 0.0.

The implementation was done in Keras1 with Tensorflow
as backend. The methods were measured on 14 different
datasets available from the UCI machine learning repository
[8]. Results were recorded after 200 epochs and 2000 epochs
(the latter number to be consistent with Gabel et al. [10]) to
reveal how fast the different methods were achieving their
performance.

5 Experimental evaluation

To calculate the performance of our similarity measure, we
chose to use the same method of evaluation as Gabel et al.
[10] to make the similarity metrics more easily comparable.
In addition, this evaluationmethodof usingpublicly available
datasets from the UCImachine learning repository [8] makes
the results easy to reproduce. We selected a subset of the
original 19 datasets, choosing not to use regression datasets,
resulting in a set of 14 classification datasets. The datasets’
numerical features were all normalized; categorical features
were replaced by a one-hot vector.

The validation losses from evaluating the similarity mea-
sures on the 14 datasets are shown in Figs. 8 and 9. Figure 8
shows the results after training for 200 epochs, while Fig. 9
shows the results after 2000 epochs. This has been done to
illustrate how the differences between the similarity mea-
sures develop during training. In addition, the 200 and 2000
epoch runs are independent runs (i.e., Fig. 9 shows not the
same models as seen in Fig. 8 1800 epochs later)

The numbers that are the basis of these figures are also
reported in Table 2 for 200 epochs and Table 3 for 2000
epochs. The tables are highlighted to show the best result per
dataset. In some cases, the differences between two methods
for one dataset were smaller than the standard deviation, thus
highlighting more than one result.

1 Code available at NTNUOpenAI lab github page: https://github.com/
ntnu-ai-lab.

123

https://github.com/ntnu-ai-lab
https://github.com/ntnu-ai-lab

Progress in Artificial Intelligence

Fig. 8 Performance of eSNN
in comparison with reference
similarity measures and
state-of-the-art similarity
methods over all test datasets
trained over 200 epochs

Fig. 9 Performance of eSNN
in comparison with reference
similarity measures and
state-of-the-art similarity
methods over all test datasets
trained over 2000 epochs

Finally, to illustrate that eSNN scales to larger datasetswe
report results from theMNISTdataset in Fig. 10. TheMNIST
results are not validation results, as calculating the similarity
between all the data points in the test set and the training set
(as per the evaluation protocol described in Sect. 4.5) was
too resource demanding.

Table 2 shows the validation losses of the different simi-
larity measures on the different datasets. Our proposed Type
4 similaritymeasure eSNN has 11% less validation loss than
the second best (Type 3) similarity measure chopra (Chopra
et al. [6]). The other Type 3 similarity measures follow with
t3,1 having 51% higher loss and gabel (Gabel et al. [10])
with 52%more loss. The Type 1 similarity measure had 61%

123

Progress in Artificial Intelligence

Table 2 Validation retrieval training, in comparison with state-of-the-
art methods

eSNN chopra gabel t3,1 t1,1 t2,1

bal 0.01 0.00 0.14 0.10 0.42 0.81

car 0.04 0.02 0.19 0.16 0.25 0.25

cmc 0.52 0.53 0.54 0.55 0.54 0.58

eco 0.22 0.20 0.46 0.35 0.21 0.22

glass 0.08 0.08 0.12 0.10 0.06 0.07

hay 0.19 0.21 0.26 0.17 0.33 0.37

heart 0.21 0.24 0.28 0.24 0.24 0.23

iris 0.04 0.03 0.18 0.07 0.05 0.04

mam 0.21 0.25 0.26 0.27 0.28 0.29

mon 0.28 0.33 0.39 0.45 0.29 0.29

pim 0.28 0.30 0.35 0.35 0.31 0.32

ttt 0.03 0.03 0.17 0.07 0.32 0.07

use 0.07 0.08 0.08 0.39 0.21 0.18

who 0.29 0.45 0.33 0.45 0.46 0.45

Sum 2.47 2.75 3.75 3.72 3.97 4.17

Average 0.18 0.20 0.27 0.27 0.28 0.30

The best result for each dataset is highlighted in bold
eSNN has the smallest loss in 8 of 14 datasets

more loss but managed to be the best similarity measure for
the glass dataset. At last, Type 2 similarity measure had 69%
higher loss than eSNN on average.

The results when training for 2000 epochs are quite differ-
ent from those at 200 epochs, as seen by howmuch closer the
other similarity measures are in Fig. 9 than in Fig. 8. eSNN
still outperforms all other similarity measures on average,
but the second best similarity measure t3,1 is much closer
with just 6.9% higher loss. gabel is 11.8% worse, chopra
is 14.7% worse, t1,1 is 61.2% worse, and finally, t2,1 is 69%
worse than eSNN .

The gap between eSNN and the state of the art is con-
siderable at 200 epochs. This gap shrinks from 11% at 200
epochs to 6.9% at 2000 epochs, which is still a considerable
difference.

To illustrate the difference in terms of training efficiency
between different types similarity measure, we show the val-
idation loss for gabel, chopra and eSNN during training.
Specifically, for each epoch we test the loss of each simi-
larity measure by the same method as described in Sect. 4.5.
Figures 11 and 12 shows validation loss during training of
eSNN, chopra and gabel on the UCI Iris andMammographic
mass datasets [8] respectively. This exemplifies the train-
ing performance of these methods in relation to the Iris and
Mammographic mass dataset results reported in Table 1 and
Table 2. One can also note that in training for the Mammo-
graphicmass dataset as seen in Fig. 11 chopra never achieves
the same performance as eSNN. In contrast, while training
on the Iris dataset (as seen in Fig. 12), which is a less com-

Table 3 Validation retrieval loss after 2000 epochs of training, in com-
parison with state-of-the-art methods

eSNN chopra gabel t3,1 t1,1 t2,1

bal 0.02 0.00 0.08 0.01 0.43 0.83

car 0.01 0.01 0.06 0.02 0.24 0.24

cmc 0.52 0.53 0.54 0.53 0.54 0.58

eco 0.22 0.20 0.22 0.18 0.19 0.21

glass 0.06 0.07 0.08 0.09 0.05 0.06

hay 0.18 0.21 0.20 0.15 0.32 0.34

heart 0.21 0.27 0.23 0.22 0.24 0.23

iris 0.08 0.05 0.07 0.04 0.06 0.05

mam 0.21 0.27 0.25 0.27 0.29 0.28

mon 0.26 0.30 0.33 0.27 0.32 0.32

pim 0.27 0.31 0.25 0.30 0.30 0.31

ttt 0.03 0.03 0.07 0.03 0.32 0.08

use 0.08 0.10 0.07 0.08 0.18 0.16

who 0.30 0.46 0.29 0.43 0.47 0.45

Sum 2.45 2.81 2.74 2.62 3.95 4.14

Average 0.18 0.20 0.20 0.19 0.28 0.30

The best result for each dataset is highlighted in bold
eSNN has the smallest validation retrieval loss in 6 of 14 datasets in
addition to the lowest average loss

Fig. 10 Training loss (not validation retrieval loss) during training on
theMNISTdataset for chopra and eSNN . gabel could not be evaluated
as training on a N (N − 1)-sized dataset for MNIST is too resource
demanding

plex dataset than the Mammographic mass dataset, chopra
achieves the same performance as eSNN.

Figure 13 shows the validation loss during training when
chopra and eSNN are using a training dataset of size N and
gabel is using a training dataset of size N (N − 1). This fig-
ure illustrates how much fewer evaluations a SNN similarity
measure like chopra or symmetric Type 4 similarity mea-
sure such as eSNN needs than a similarity measurement that
is not invariant to input ordering, while still having excellent
relative performance.

123

Progress in Artificial Intelligence

Fig. 11 Validation retrieval loss during training on the Mammograph
UCI ML dataset [8]. The figure shows that the mammograph dataset is
a dataset that needs learning outside of embedding via G(·). chopra
starts out good asC(x̂, x̂) is already designed as the L1 norm. However,
eSNN and gabel catch up when it learns an equivalent and better
C(x̂, x̂) function

Fig. 12 Validation retrieval loss during training on the Iris UCI ML
dataset [8]. Since chopra starts out with very low validation loss, it
seems probable that the static L1 norm C(x̂, x̂) used by chopra is
close to optimal for correctly identifying if the two data points belong
to the same class or not. The performance increase done by chopra
is a slight optimization of G(·). The performance increase done during
training by gabel and eSNN is mainly by learning aC(x̂, x̂) equivalent
in function to that used by chopra, and secondary a slight optimization
of G(·). eSNN catches up to chopra in performance after around 20
epochs; however, gabel takes longer (5%validation loss at 2000 epochs)
as shown in Table 3

Finally, in Figs. 14 and 15 we show how eSNN can be
used for semi-supervised clustering. The figures show PCA
and T-SNE clustering of embeddings produced untrained
and trained eSNN networks, respectively, from the MNIST
dataset. The embeddings are the vector output of G(·) for
each of the data points in the test set. The embeddings shown
are computed from a test set that is not used for training. The

Fig. 13 Validation retrieval loss during training on the balance dataset,
which illustrates the difference in amount of evaluations needed to
achieve acceptable performance. Chopra achieves good performance
very quickly, but is outperformed by eSNN soon. Both have very good
performance before having evaluated less (N) data points than used by
one epoch needed by gabel (N (N − 1))

(a)

(b)

Fig. 14 PCA clustering showing the two first principal components
(PCA1 and PCA2) of the embeddings produced by eSNN from
MNIST input before (a) and after (b) training

123

Progress in Artificial Intelligence

(a)

(b)

Fig. 15 T-SNE clustering of embeddings produced by eSNN from
MNIST input before (a) and after (b) training

figures show that eSNN learns away to correctly cluster data
points that it has not used for training.

6 Conclusions and future work

Section 5 shows that all of the learned similarity measures
outperformed the classical similarity measure t1,1 and also
t2,1 where the local (per feature) similarity measures were
adapted to the statistical properties of the features [1]. In
practice, one should weight the importance of each fea-
ture according to how important it is in terms of similarity
measurement. In many situations, the number of possible
attributes to include in such a function can be overwhelm-
ing, and modeling them in the way we did in t1,1 and t3,1
also overlooks possible covariations between the attributes.
Both of these problems can be addressed using the proposed
method to model the similarity using machine learning on a
dataset that maps from case problem attributes to case solu-
tion attributes.

However, one should be careful to note that all of the
learned similarity measures are built on the assumption that
similar data points have similar target values (δs ≈ δe ≈
δp in Fig. 2). If this assumption does not hold, learning the
similarity measure might be much more difficult.

We have also presented a framework for how to analyze
and group different types of similarity measures. We have
used this framework to analyze previous work and highlight
different strengths and weaknesses of the different types of
similarity measures. This also highlighted unexplored types
of similarity measures, such as Type 4 similarity measures.

As a result, we designed and evaluated a Type 3 sim-
ilarity measure t3,1 based on a classifier. The evaluations
showed that using a classifier as a basis for a similarity mea-
sure achieves comparable results to state-of-the-art methods,
while using much less training evaluations to achieve that
performance.

We then combined strengths from Type 4 and Type 3 sim-
ilarity measures into a new Type 4 similarity measure, called
extended siamese neural networks (eSNN), which

– Learns an embedding of the data points using G(·) in the
sameway as Type 3 similaritymeasures, but using shared
weights in the same way as SNNs to make the operation
symmetrical.

– Learns C(x̂, ŷ), thus enabling extended performance in
relation to SNN and other Type 3 similarity measure-
ments.

– Restricts C(x̂, ŷ) to make it invariant to input ordering
and thus obtaining end-to-end symmetry through the sim-
ilarity measure.

Keeping eSNN symmetrical end to end enables the user
of this similarity measure to train on much smaller datasets
than required by other types of similarity measures. Type 3
measures based on SNNs also have this advantage, but our
results show that the ability to learn C(x̂, ŷ) is important for
performance inmany of the 14 datasets we tested. Our results
showed that eSNN outperformed state-of-the-art methods
on average over the 14 datasets by a large margin. We also
demonstrated that eSNN achieved this performance much
faster given the same dataset than current state of the art.
In addition, the symmetry of eSNN enables it to train on
datasets that are orders of magnitude smaller. Our case study
of clustering embeddings produced from eSNN shows that
the eSNN model can be used for semi-supervised clustering.

Finally, we demonstrated that the training of this similar-
ity measure scales to large datasets like MNIST. Our main
motivation for this work was to automate the construction
of similarity measures while keeping training time as low as
possible.Wehave shown that eSNN is a step toward this.Our
evaluation shows that it can learn similarity measures across
a wide variety of datasets. We also show that it scales well

123

Progress in Artificial Intelligence

in comparison with similar methods and scales to datasets of
some size such as MNIST.

The applications for eSNN as a similarity measure are
not only as a similarity measure in a CBR system. It can also
be used for semi-supervised clustering: training eSNN on
labeled data, then use the trained eSNN for clustering unla-
beled data. In much the same fashion, it could be used for
semi-supervised clustering, using eSNN as a matching net-
work in the same fashion as the distance measure is applied
in Vinyals et al. [31].

In continuation of this work, we would like to explore
what is actually encoded by learned similaritymeasures. This
could be done by varying the different features of a query
data point q in S(x, q) and discovering when that data point
would change fromone class to another (when the class of the
closest other data point changes)—this would form a multi-
dimensional boundary for each class. This boundary could be
explored to determine what the similarity measure actually
encoded during the learning phase.

Another interesting avenue of research would be to apply
recurrent neural networks to embed time series into embed-
ding space (see Fig. 2) to enable the similarity measure to
calculate similarity between time series which is currently a
non-trivial problem.

The architecture of similarity measures still requires more
investigation, e.g., is the optimal embedding from G(·) dif-
ferent from the softmax classification vector used in normal
supervised learning? If so, it is worth investigating why it is
different.

Acknowledgements We would like to thank the EXPOSED project
(grant number 237790) and NTNU Open AI Lab for the support to
do this work. Thanks also to Gunnar Senneset and Hans Vanhauwaert
Bjelland for their great support during our work.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Abdel-Aziz, A., Strickert, M., Hüllermeier, E.: Learning solution
similarity in preference-based CBR. In: International Conference
on Case-Based Reasoning, pp. 17–31. Springer, Berlin (2014)

2. Arandjelovic, R., Zisserman, A.: Look, listen and learn. In: 2017
IEEE International Conference on Computer Vision (ICCV), pp.
609–617. IEEE (2017)

3. Bergmann, R.: Experience Management: Foundations, Develop-
ment Methodology, and Internet-Based Applications. Springer,
Berlin (2002)

4. Berlemont, S., Lefebvre,G.,Duffner, S.,Garcia, C.: Siamese neural
network based similarity metric for inertial gesture classification
and rejection. In: 2015 11th IEEE International Conference and

Workshops on Automatic Face and Gesture Recognition (FG),
vol. 1, pp. 1–6. IEEE (2015)

5. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signa-
ture verification using a” siamese” time delay neural network. In:
Advances in neural information processing systems, pp. 737–744
(1994)

6. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric
discriminatively, with application to face verification. In: IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, 2005. CVPR 2005, vol. 1, pp. 539–546. IEEE (2005)

7. Cunningham, P.: A taxonomy of similarity mechanisms for case-
based reasoning. IEEE Trans. Knowl. Data Eng. 21(11), 1532–
1543 (2009)

8. Dheeru,D.,KarraTaniskidou,E.:UCImachine learning repository.
http://archive.ics.uci.edu/ml (2017). Accessed 1 June 2019

9. Florescu, C., Igel, C.: Resilient backpropagation (RPROP) for
batch-learning in tensorflow. In: ICLR 2018Workshop Permission
Proceedings (to appear) (2018)

10. Gabel, T., Godehardt, E.: Top-down induction of similarity mea-
sures using similarity clouds. In: Hüllermeier, E., Minor, M. (eds.)
Case-Based Reasoning Research and Development, pp. 149–164.
Springer International Publishing, Cham (2015)

11. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by
learning an invariant mapping. In: 2006 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR’06) IEEE, pp. 1735–1742 (2006)

12. He,K., Zhang,X., Ren, S., Sun, J.:Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770–778 (2016)

13. Hoffer, E.,Ailon,N.:Deepmetric learningusing triplet network. In:
International Workshop on Similarity-Based Pattern Recognition,
pp. 84–92. Springer, Berlin (2015)

14. Hüllermeier, E., Cheng, W.: Preference-based CBR: general ideas
and basic principles. In: IJCAI, pp. 3012–3016 (2013)

15. Hüllermeier, E., Schlegel, P.: Preference-based CBR: first steps
toward a methodological framework. In: International Conference
on Case-Based Reasoning, pp. 77–91. Springer, Berin (2011)

16. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks
for one-shot image recognition. In: ICML Deep Learning Work-
shop, vol. 2 (2015)

17. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level
concept learning through probabilistic program induction. Science
350(6266), 1332–1338 (2015)

18. Langseth, H., Aamodt, A., Winnem, O.M.: Learning retrieval
knowledge from data. In: Sixteenth International Joint Conference
on Artificial Intelligence, Workshop ML-5: Automating the Con-
struction ofCase-BasedReasoners, pp. 77–82. Stockholm,Citeseer
(1999)

19. Leake, D.B.: Case-Based Reasoning: Experiences, Lessons and
Future Directions. MIT Press, Cambridge (1996)

20. Lefebvre, G., Garcia, C.: Learning a bag of features based nonlin-
ear metric for facial similarity. In: 2013 10th IEEE International
Conference on Advanced Video and Signal Based Surveillance
(AVSS), pp. 238–243. IEEE (2013)

21. Maggini, M., Melacci, S., Sarti, L.: Learning from pairwise con-
straints by similarity neural networks. Neural Netw. 26, 141–158
(2012)

22. Martin, K., Wiratunga, N., Sani, S., Massie, S., Clos, J.: A con-
volutional siamese network for developing similarity knowledge
in the selfback dataset. In: Proceedings of the International Con-
ference on Case-Based Reasoning Workshops, CEUR Workshop
Proceedings, ICCBR (Organisers), pp. 85–94 (2017)

23. Nikpour, H., Aamodt, A., Bach, K.: Bayesian-supported retrieval
in BNCreek: A knowledge-intensive case-based reasoning system.
In: International Conference on Case-Based Reasoning, pp. 323–
338. Springer, Berlin (2018)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://archive.ics.uci.edu/ml

Progress in Artificial Intelligence

24. Reategui, E.B., Campbell, J.A., Leao, B.F.: Combining a neural
network with case-based reasoning in a diagnostic system. Artif.
Intell. Med. 9(1), 5–27 (1997)

25. Riedmiller, M., Braun, H.: A direct adaptive method for faster
backpropagation learning: The RPROP algorithm. In: IEEE Inter-
national Conference on Neural Networks, pp. 586–591. IEEE
(1993)

26. Shawe-Taylor, J.: Symmetries and discriminability in feedforward
network architectures. IEEE Trans. Neural Netw. 4(5), 816–826
(1993)

27. Stahl, A.: Learning feature weights from case order feedback. In:
International Conference on Case-Based Reasoning, pp. 502–516.
Springer, Berlin (2001)

28. Stahl, A., Gabel, T.: Using evolution programs to learn local
similarity measures. In: International Conference on Case-Based
Reasoning, pp. 537–551 (2003)

29. Stahl,A.,Gabel, T.:Optimizing similarity assessment in case-based
reasoning. In: Proceedings of the National Conference onArtificial
Intelligence, Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, vol. 21, p. 1667 (2006)

30. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327 (1977)
31. Vinyals,O., Blundell, C., Lillicrap, T.,Wierstra,D., et al.:Matching

networks for one shot learning. In: Advances inNeural Information
Processing Systems, pp. 3630–3638 (2016)

32. Wienhofen, L.W.M., Mathisen, B.M.: Defining the Initial Case-
Base for a CBR Operator Support System in Digital Finishing, pp.
430–444. Springer International Publishing, Cham (2016). https://
doi.org/10.1007/978-3-319-47096-2_29

33. Zagoruyko, S., Komodakis, N.: Learning to compare image patches
via convolutional neural networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
4353–4361 (2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-47096-2_29
https://doi.org/10.1007/978-3-319-47096-2_29

	Learning similarity measures from data
	Abstract
	1 Introduction
	2 A framework for similarity measures
	3 Related work
	4 Method
	4.1 Reference similarity measures
	4.2 Type 3 similarity measure
	4.3 Type 4 similarity measure
	4.4 Network parameters
	4.5 Evaluation protocol and implementation

	5 Experimental evaluation
	6 Conclusions and future work
	Acknowledgements
	References

